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Bicyclo[10.10.10]dotriacontanes, the largest bicyclo[n:n:n]-
alkanes ever known, have been first synthesized by Raney
nickel reduction of trithienylmethanophanes consisiting of two
tris(2-thienyl)methanes and three etheno bridges. X-ray crystal-
lographic analysis of a crystalline derivative confirmed the struc-
ture, though disorder of included hexane molecules lowered the
accuracy.

Bicyclo[n:n:n]alkane with long methylene chains would be
the simplest type of alkane-cage molecule. It would be concep-
tually of interest whether such alkane-cage molecules can act, if
at all, as host molecules for atoms or small molecules. The larg-
est member so far known has been bicyclo[8.8.8]hexacosane1

whose cavity is yet too small to be called a cage molecule.
We have recently reported the synthesis of novel cage mole-

cules, trithienylmethanophanes2 1a, 1b, which are composed of
two tris(2-thienyl)methanes and three etheno bridges, by the
McMurry coupling of tris(5-formyl-2-thienyl)methanes.3,4 In
view of the synthetic equivalency of thiophene with n-butane
through Raney nickel reduction,5–7 compounds 1 would be ideal
precursors for hitherto unknown bicyclo[10.10.10]dotriacon-
tanes (2). Here we wish to report the synthesis of 2b–2d, the
largest members of bicyclo[n:n:n]alkane ever known.
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a: R = H
b: R = CH2Ph 
c: R = CH2C6H3-3,5-(OCH3)2
d: R = CH2C6H3-3,5-(OH)2

At first, we studied the Raney nickel reduction of 1-phenyl-
2,2,2-tris(2-thienyl)ethane 3, a nearly half part of 1b, to optimize
the reaction conditions, because the availability of the cage com-
pounds 1 is rather poor. The phenyl group in 3 was expected to
serve as a probe for UV-detection in the thin layer chromatogra-
phy (Scheme 1). Hydrodesulfurization of 3 was examined under
various conditions, i.e., temperature, reaction time, activity of
Raney nickel, and pressure of hydrogen. Although the expected
hydrocarbon 4 was sometimes obtained fairly cleanly at reflux
temperatures of solvents in air, the reproducibility was poor.
The crude products mostly exhibited small signals of olefinic
protons even with use of a large excess amount of the reducing
agents. It was found, however, that compound 3 is reduced
cleanly to 4 using an excess amount of Raney nickel W7 under
medium pressure (0.3MPa) of hydrogen in ethanol–benzene at
85 �C for 5 h.

Reduction of 1b under the successful conditions for 3 gave
2b8 as colorless viscous oil in 82% yield (Scheme 2). The EI
mass spectrum of 2b shows strong fragment peaks assignable
to [ðM� CH2PhÞþ; 100%] and [ðM� 2� CH2PhÞþ; 40%].
The rather simple 1H and 13CNMR spectra agree with the D3h

symmetric structure of 2b, in particular, the latter spectrum ex-
hibiting only four aromatic carbon and seven aliphatic carbon
signals.

To obtain the structural information in more detail, X-ray
analysis of 2 was desirable. However, 2b has remained oily upon
attempted crystallizations. We expected that introduction of in-
termolecular hydrogen bonds should make 2 more crystalline
and designed compound 2d that has 3,5-dihydroxyphenyl groups
in place of phenyl groups of 2b. The precursor 1c9 was prepared
in similar way for 1b. Raney nickel reduction of 1c, followed by
passing through a short alumina column to eliminate the metal
and then chromatography on silica gel, afforded 2c10 in 99%
yield as colorless oil. Demethylation of 2c with boron tribromide
in dichloromethane gave 2d10 in 93% yield (Scheme 2). As ex-
pected, compound 2d was obtained as colorless solid and its
careful recrystallization from hexane–ethyl acetate furnished
single crystals.

Figure 1 shows an ORTEP drawing of 2d.11 The crystal con-
tains one hexane molecule in a unit-cell, not in the cavity of 2d,
in highly disordered manner, thus preventing discussions on the
detailed structure. Nevertheless, the ORTEP drawing confirms
the bicyclo[10.10.10]dotoriacontane structure of 2d. Figure 2
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shows the crystal packing where supramolecular networks
through hydrogen-bondings between 3,5-dihydoroxylphenyl
groups are seen.

The cavity of 2d is estimated to be approximately 5:0�
1:4� 1:4 �A in size, which is not so large, and there has been ob-
served little sign of inclusion of small molecules such as ben-
zene, naphthalene and their derivatives in the cavity as far as
1HNMR spectral monitoring are concerned. For obtaining con-
firmative conclusion on the host-ability of bicyclo[n:n:n]alkanes,
synthesis and examinations with the bicycloalkanes with longer
alkyl chains might be necessary.

In conclusion, we have synthesized the first bicyclo-
[10.10.10]dotoriacontane derivatives by Raney nickel hydrode-
sulfurization of the precursor trithienylmethanophanes. In view
of possible trilithiation or aromatic electrophilic substitution of
tris(2-thienyl)methanes, such as 3, at 5-postions of the thienyl
groups, the present trithienylmethanophane-Raney nickel reduc-
tion method would lead to a variety of large bicylo[n:n:n]alkanes

and related compounds. The synthesis of those compounds are
under way.
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Figure 1. ORTEP drawing of 2d. Hydrogen atoms and the
disordered hexane molecule are omitted for clarity.

Figure 2. Crystal packing of 2d viewed along b axis. Dashed
lines indicate hydrogen bond.
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