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Bicyclo[10.10.10]dotriacontanes: the Largest Bicyclo[r.rn.n]alkane Ever Known
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Bicyclo[10.10.10]dotriacontanes, the largest bicyclo[n.n.n]-
alkanes ever known, have been first synthesized by Raney
nickel reduction of trithienylmethanophanes consisiting of two
tris(2-thienyl)methanes and three etheno bridges. X-ray crystal-
lographic analysis of a crystalline derivative confirmed the struc-
ture, though disorder of included hexane molecules lowered the
accuracy.

Bicyclo[n.n.n]alkane with long methylene chains would be
the simplest type of alkane-cage molecule. It would be concep-
tually of interest whether such alkane-cage molecules can act, if
at all, as host molecules for atoms or small molecules. The larg-
est member so far known has been bicyclo[8.8.8]hexacosanel
whose cavity is yet too small to be called a cage molecule.

We have recently reported the synthesis of novel cage mole-
cules, trithienylmethanophanes? 1a, 1b, which are composed of
two tris(2-thienyl)methanes and three etheno bridges, by the
McMurry coupling of tris(5-formyl-2-thienyl)methanes.>* In
view of the synthetic equivalency of thiophene with n-butane
through Raney nickel reduction,”~’ compounds 1 would be ideal
precursors for hitherto unknown bicyclo[10.10.10]dotriacon-
tanes (2). Here we wish to report the synthesis of 2b-2d, the
largest members of bicyclo[n.n.n]alkane ever known.

a: H

b: R = CH,Ph
cR= CH2C6H3-3,5-(OCH3)2
d: R = CH,CgH;3-3,5-(0H),

At first, we studied the Raney nickel reduction of 1-phenyl-
2,2,2-tris(2-thienyl)ethane 3, a nearly half part of 1b, to optimize
the reaction conditions, because the availability of the cage com-
pounds 1 is rather poor. The phenyl group in 3 was expected to
serve as a probe for UV-detection in the thin layer chromatogra-
phy (Scheme 1). Hydrodesulfurization of 3 was examined under
various conditions, i.e., temperature, reaction time, activity of
Raney nickel, and pressure of hydrogen. Although the expected
hydrocarbon 4 was sometimes obtained fairly cleanly at reflux
temperatures of solvents in air, the reproducibility was poor.
The crude products mostly exhibited small signals of olefinic
protons even with use of a large excess amount of the reducing
agents. It was found, however, that compound 3 is reduced
cleanly to 4 using an excess amount of Raney nickel W7 under
medium pressure (0.3 MPa) of hydrogen in ethanol-benzene at
85°C for 5h.
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Scheme 1.

Reduction of 1b under the successful conditions for 3 gave
2b® as colorless viscous oil in 82% yield (Scheme 2). The EI
mass spectrum of 2b shows strong fragment peaks assignable
to [(M — CH,Ph)*; 100%] and [(M — 2 x CH,Ph)T; 40%].
The rather simple 'H and '3C NMR spectra agree with the D3,
symmetric structure of 2b, in particular, the latter spectrum ex-
hibiting only four aromatic carbon and seven aliphatic carbon
signals.
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b —— 2b
82%
i) ii)
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i) 50 equiv. (w/w) Raney Nickel W7, 0.3 MPa H;, EtOH-benzene,
85 °C, 5 h, ii) excess BBr3, CH,Clp, =30 °C thenrt 1 h.

Scheme 2.

To obtain the structural information in more detail, X-ray
analysis of 2 was desirable. However, 2b has remained oily upon
attempted crystallizations. We expected that introduction of in-
termolecular hydrogen bonds should make 2 more crystalline
and designed compound 2d that has 3,5-dihydroxyphenyl groups
in place of phenyl groups of 2b. The precursor 1¢® was prepared
in similar way for 1b. Raney nickel reduction of 1¢, followed by
passing through a short alumina column to eliminate the metal
and then chromatography on silica gel, afforded 2¢!° in 99%
yield as colorless oil. Demethylation of 2¢ with boron tribromide
in dichloromethane gave 2d'° in 93% yield (Scheme 2). As ex-
pected, compound 2d was obtained as colorless solid and its
careful recrystallization from hexane—ethyl acetate furnished
single crystals.

Figure 1 shows an ORTEP drawing of 2d.!! The crystal con-
tains one hexane molecule in a unit-cell, not in the cavity of 2d,
in highly disordered manner, thus preventing discussions on the
detailed structure. Nevertheless, the ORTEP drawing confirms
the bicyclo[10.10.10]dotoriacontane structure of 2d. Figure 2
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Figure 1. ORTEP drawing of 2d. Hydrogen atoms and the
disordered hexane molecule are omitted for clarity.

Figure 2. Crystal packing of 2d viewed along b axis. Dashed
lines indicate hydrogen bond.

shows the crystal packing where supramolecular networks
through hydrogen-bondings between 3,5-dihydoroxylphenyl
groups are seen.

The cavity of 2d is estimated to be approximately 5.0 x
1.4 x 1.4 A in size, which is not so large, and there has been ob-
served little sign of inclusion of small molecules such as ben-
zene, naphthalene and their derivatives in the cavity as far as
THNMR spectral monitoring are concerned. For obtaining con-
firmative conclusion on the host-ability of bicyclo[n.n.n]alkanes,
synthesis and examinations with the bicycloalkanes with longer
alkyl chains might be necessary.

In conclusion, we have synthesized the first bicyclo-
[10.10.10]dotoriacontane derivatives by Raney nickel hydrode-
sulfurization of the precursor trithienylmethanophanes. In view
of possible trilithiation or aromatic electrophilic substitution of
tris(2-thienyl)methanes, such as 3, at 5-postions of the thienyl
groups, the present trithienylmethanophane-Raney nickel reduc-
tion method would lead to a variety of large bicylo[n.n.n]alkanes
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and related compounds. The synthesis of those compounds are
under way.
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